1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
import itertools
def small_roots(f, bounds, m=1, d=None): if not d: d = f.degree()
if isinstance(f, Polynomial): x, = polygens(f.base_ring(), f.variable_name(), 1) f = f(x)
R = f.base_ring() N = R.cardinality() f = f.change_ring(ZZ)
G = Sequence([], f.parent()) for i in range(m+1): base = N^(m-i) * f^i for shifts in itertools.product(range(d), repeat=f.nvariables()): g = base * prod(map(power, f.variables(), shifts)) G.append(g)
B, monomials = G.coefficient_matrix() monomials = vector(monomials)
factors = [monomial(*bounds) for monomial in monomials] for i, factor in enumerate(factors): B.rescale_col(i, factor)
B = B.dense_matrix().LLL()
B = B.change_ring(QQ) for i, factor in enumerate(factors): B.rescale_col(i, 1/factor)
H = Sequence([], f.parent().change_ring(QQ)) for h in filter(None, B*monomials): H.append(h) I = H.ideal() if I.dimension() == -1: H.pop() elif I.dimension() == 0: roots = [] for root in I.variety(ring=ZZ): root = tuple(R(root[var]) for var in f.variables()) roots.append(root) return roots
return []
e = 0x73915608ed64c9cf1a2279684cab4f4a78fba229d45d4f860971a241481363470a19cb0dc0d00f816b5befdaca017cf71483e96ef17b36179012f5194a0e6bf481bb06c2644f74c6812efb65d05c00631f282d6aa55c0bc140a1830b95a1cf4b6024cb0db53f2c2189897c41f22e2eec773723f531ec4bfa537fae6de5fe480cf46fe17850f7eb47df08194d95db3d26ac923b26e110ee645239ab586bbc546ddc5906f280a106edbb727ccb05536b5a3f5c0ebcf865c95ce58be54f7f3547aa53baa218b0dfa98e42d925fa341e45f94a3b16b0c83802660c7f34de3336cb21f219073cf8e9f5e39d47f0a9a9ee7c255f09a6add9a2f7a47960f4a853183d29 N = 0xba8956e81394f3f1265ca5d9c4ad1ab0078bb43c4b80a231ab2cc62246ae45f66a562252622aed2cbbfc08647ef2fec0f97a632bf2242845f4b3af0c427cec3d90f42e90278a5a0feeed0922a8cd2278074ac54e9cfc0e96ff68f8d8f266dd87dc1cc59c2895ec884de2022311767f6a9a7e0bd288c79620e28b83bb3c8d8ad1047c839d6ccf5544eaf434a5f00b951769ab3121298d04b63a162757beb3d49917cd0c9e02ee1ac29398c8130961d5a2f2833aba1e538edb7bb97071f40fae543d1622f0c9206c6d4d8abb2ac1b93ebfb603c2f3a909ede357ade4043550fe540d13a4e87db8d731fe130f15a43a1a00364f5da2d87f7b660c3a04e734218a11 hints = [1, 3, 0, 3, 9, 16, 10, 14, 5, 11, 21, 18, 30, 30, 38, 2, 20, 62, 66, 1, 22, 56, 41, 13, 78, 59, 51, 6, 57, 117, 73, 75, 96, 112, 50, 93, 158, 97, 146, 8, 65, 96, 186, 161, 90, 131, 46, 32, 140, 133, 50, 43, 151, 234] ct = 0x101b284ad196b5bbd3d3df00a7d3577caeb29c681bdd122582b705afc671febf45d4f3786640e55aadd6a31ecc49175f97b772720f1735f8555f768b137a4643cd6958f80a3dfca4d0270ad463d6dde93429940bd2abb5ad8408b0906fa8d776544a1c50cc0d95939bef4c3fb64d0b52dca81ff0f244fc265bfc0bc147435d05f8f1a146e963a1403b3c123b4d6e73d1fd897109995009be1673212607f0ea7ae33d23f3158448b05c28ea6636382eee9436c4a6c09023ead7182ecd55ac73a68d458d726e1abc208810468591e63f4b4c2c1f3ce27c4800b52f7421ccab432c03e88b3b255740d719e40e0226eabb7633d97ed210e32071e2ac36ed17ef442e
num_hints = len(hints) sieve_base = list(sieve_base) primes = sieve_base[1 : num_hints + 1] M = product(primes) d0 = crt(hints, primes)
R.<k,s> = PolynomialRing(Zmod(e*M)) f = e*d0 - 1 - k * (N - s + 1) res = small_roots(f,(2^676,2^1025),m=1,d=2)
k = 81654615013062315740859648077669041820032254119133930508020259262868139640323751053386808815603259330292010187040327207703579843971426978151927033372711655537974461264685966709101578503364634863703748863 s = 307418535695879466735463624869957924354358665052136409248678026715718383427120772212039629998693207855281708171850879171131527744317839878812415135610115774273232848128353184128891514282686549164628675031032302196224590402569695631086177519084924289711604045185861705566454491785664136393955640722211793934882
p = 162568707874348757830017981324054244343649185213197403637567049635272523397583872953595028729502893337750180312800896062635050332212128836106889628645625189460561837738620947057144783601425723834152966458923355830383900722816802076822113540755216842480068493842631250088527236409536028527544211599757688872629 assert N % p== 0 q = N // p phi = (p-1)*(q-1) d = inverse_mod(e,phi) print(b"NepCTF{" + long_to_bytes(pow(ct,d,N)) + b"}")
import itertools
def small_roots(f, bounds, m=1, d=None): if not d: d = f.degree()
if isinstance(f, Polynomial): x, = polygens(f.base_ring(), f.variable_name(), 1) f = f(x)
R = f.base_ring() N = R.cardinality() f = f.change_ring(ZZ)
G = Sequence([], f.parent()) for i in range(m+1): base = N^(m-i) * f^i for shifts in itertools.product(range(d), repeat=f.nvariables()): g = base * prod(map(power, f.variables(), shifts)) G.append(g)
B, monomials = G.coefficient_matrix() monomials = vector(monomials)
factors = [monomial(*bounds) for monomial in monomials] for i, factor in enumerate(factors): B.rescale_col(i, factor)
B = B.dense_matrix().LLL()
B = B.change_ring(QQ) for i, factor in enumerate(factors): B.rescale_col(i, 1/factor)
H = Sequence([], f.parent().change_ring(QQ)) for h in filter(None, B*monomials): H.append(h) I = H.ideal() if I.dimension() == -1: H.pop() elif I.dimension() == 0: roots = [] for root in I.variety(ring=ZZ): root = tuple(R(root[var]) for var in f.variables()) roots.append(root) return roots
return []
e = 0x73915608ed64c9cf1a2279684cab4f4a78fba229d45d4f860971a241481363470a19cb0dc0d00f816b5befdaca017cf71483e96ef17b36179012f5194a0e6bf481bb06c2644f74c6812efb65d05c00631f282d6aa55c0bc140a1830b95a1cf4b6024cb0db53f2c2189897c41f22e2eec773723f531ec4bfa537fae6de5fe480cf46fe17850f7eb47df08194d95db3d26ac923b26e110ee645239ab586bbc546ddc5906f280a106edbb727ccb05536b5a3f5c0ebcf865c95ce58be54f7f3547aa53baa218b0dfa98e42d925fa341e45f94a3b16b0c83802660c7f34de3336cb21f219073cf8e9f5e39d47f0a9a9ee7c255f09a6add9a2f7a47960f4a853183d29 N = 0xba8956e81394f3f1265ca5d9c4ad1ab0078bb43c4b80a231ab2cc62246ae45f66a562252622aed2cbbfc08647ef2fec0f97a632bf2242845f4b3af0c427cec3d90f42e90278a5a0feeed0922a8cd2278074ac54e9cfc0e96ff68f8d8f266dd87dc1cc59c2895ec884de2022311767f6a9a7e0bd288c79620e28b83bb3c8d8ad1047c839d6ccf5544eaf434a5f00b951769ab3121298d04b63a162757beb3d49917cd0c9e02ee1ac29398c8130961d5a2f2833aba1e538edb7bb97071f40fae543d1622f0c9206c6d4d8abb2ac1b93ebfb603c2f3a909ede357ade4043550fe540d13a4e87db8d731fe130f15a43a1a00364f5da2d87f7b660c3a04e734218a11 hints = [1, 3, 0, 3, 9, 16, 10, 14, 5, 11, 21, 18, 30, 30, 38, 2, 20, 62, 66, 1, 22, 56, 41, 13, 78, 59, 51, 6, 57, 117, 73, 75, 96, 112, 50, 93, 158, 97, 146, 8, 65, 96, 186, 161, 90, 131, 46, 32, 140, 133, 50, 43, 151, 234] ct = 0x101b284ad196b5bbd3d3df00a7d3577caeb29c681bdd122582b705afc671febf45d4f3786640e55aadd6a31ecc49175f97b772720f1735f8555f768b137a4643cd6958f80a3dfca4d0270ad463d6dde93429940bd2abb5ad8408b0906fa8d776544a1c50cc0d95939bef4c3fb64d0b52dca81ff0f244fc265bfc0bc147435d05f8f1a146e963a1403b3c123b4d6e73d1fd897109995009be1673212607f0ea7ae33d23f3158448b05c28ea6636382eee9436c4a6c09023ead7182ecd55ac73a68d458d726e1abc208810468591e63f4b4c2c1f3ce27c4800b52f7421ccab432c03e88b3b255740d719e40e0226eabb7633d97ed210e32071e2ac36ed17ef442e
num_hints = len(hints) sieve_base = list(sieve_base) primes = sieve_base[1 : num_hints + 1] M = product(primes) d0 = crt(hints, primes)
R.<k,s> = PolynomialRing(Zmod(e*M)) f = e*d0 - 1 - k * (N - s + 1) res = small_roots(f,(2^676,2^1025),m=1,d=2)
k = 81654615013062315740859648077669041820032254119133930508020259262868139640323751053386808815603259330292010187040327207703579843971426978151927033372711655537974461264685966709101578503364634863703748863 s = 307418535695879466735463624869957924354358665052136409248678026715718383427120772212039629998693207855281708171850879171131527744317839878812415135610115774273232848128353184128891514282686549164628675031032302196224590402569695631086177519084924289711604045185861705566454491785664136393955640722211793934882
p = 162568707874348757830017981324054244343649185213197403637567049635272523397583872953595028729502893337750180312800896062635050332212128836106889628645625189460561837738620947057144783601425723834152966458923355830383900722816802076822113540755216842480068493842631250088527236409536028527544211599757688872629 assert N % p== 0 q = N // p phi = (p-1)*(q-1) d = inverse_mod(e,phi) print(b"NepCTF{" + long_to_bytes(pow(ct,d,N)) + b"}")
|